Значительно обновлена демка физики автомобиля на Dagon, которая отныне называется Chillwave Drive. Трение колес теперь моделируется на чистых силах вместо встроенных джоинтов Newton, что сделало симуляцию более точной и стабильной. При движении используется динамическое трение (продольное и поперечное) на основе формул Pacejka ’98, при остановке — статическое, препятствующее боковому скольжению машины на склоне. Улучшено управление с контроллера, также добавлена новая модель машины и шейдер неба с облаками и сменой дня и ночи.
Скачать готовую сборку демки под Windows можно тут.
В 2013-2017 годах я писал собственный физический движок, в котором LCP решается через систему неравенств для скоростей: каждое неравенство вводит в систему ограничение свободы для пары столкнувшихся тел, солвер итеративно решает столкновения путем корректировки скоростей. Это универсальный, но вычислительно недешевый метод, к тому же подверженный эффектам нестабильности. Импульсная физика хороша для движущихся тел, но не очень стабильна в состояниях покоя — тела часто дрожат, и для их «успокаивания» приходится вводить различные уловки и хаки, которые неизбежно вводят в систему ошибки, понижая точность симуляции.
В импульсных движках используется интегрирование Эйлера:
Где Δx — скорость частицы — интегрируется аналогичным образом на основе ускорения:
Таким образом, «физично» подействовать на частицу можно только через скорости и силы. Все ограничения в систему вводятся только через скорости — модифицировать позиции тел вручную нельзя, что делает импульсную физику в играх менее удобной для определенных геймплейных задач. Однако существует альтернативный подход на основе интегрирования Верле:
Из формулы получается, что для частицы не нужно хранить скорость, но нужна позиция с предыдущего шага интегрирования.
for(size_t i =0; i < positions.length; i++){
Vector3f currentPos = positions[i];
positions[i]+=(currentPos - oldPositions[i])+ freeFallAcceleration *(dt * dt);
oldPositions[i]= currentPos;}
Метод Верле позволяет легко вводить в систему ограничения: чтобы их решить, нужно итеративно скорректировать позиции частиц. Например, в случае с веревкой — то есть, набором последовательно соединенных частиц — расстояние между ними делается таким, каким оно должно быть (то есть, позиции частиц корректируются так, чтобы расстояние между ними не увеличивалось и не уменьшалось):
Аналогичным образом разрешаются столкновения: для частиц вводится объемная оболочка (например, сфера), взаимопроникшие тела перемещаются в кратчайшем направлении так, чтобы их оболочки не пересекались. Алгоритмы проверки столкновений обычно дают необходимую для этого информацию — нормаль и глубину проникновения. Преимущество перед импульсным подходом в том, что для этого не нужно составлять систему для скоростей — вы можете напрямую корректировать позиции и, таким образом, легко реализовать любую модель столкновений.
Попытка написать для Dagon физику веревки на основе интегрирования Верле увенчалась успехом! Добавил даже поддержку столкновений с боксами. В скором времени выложу эту демку в публичный доступ. Не исключено и добавление веревки в качестве встроенного объекта в движок.
Записал видео обновленной демки с физикой автомобиля на движке Dagon: новая модель трения (формула Пасейки), поддержка звуков (используется движок SoLoud), множество мелких улучшений и багфиксов.
Демка с физикой автомобиля, которую я разработал в начале этого года для Patreon Sponsor Folder, теперь доступна на GitHub в репозитории https://github.com/gecko0307/vehicle-demo — с многочисленными улучшениями, которые я сделал за последние месяцы (в частности, появилась поддержка модели трения колес Pacejka Magic Formula). Пруф того, что на основе связки Dagon + Newton вполне можно написать гоночную игру. Как-нибудь, возможно, напишу подробную статью на эту тему.