Распараллеливание обработки изображений

API dlib.image позволяет создавать фильтры, которые легко распараллеливать на несколько процессоров. Изображение условно разбивается на несколько блоков заданного размера, которые затем обрабатываются фильтром через std.parallelism.

import std.parallelism;
import dlib.functional.range;
import dlib.image.image;

struct Block
{
    uint x1, y1;
    uint x2, y2;
}

alias Range!uint PixRange;

void parallelFilter(
     SuperImage img, 
     void delegate(PixRange blockRow, PixRange blockCol) ffunc, 
     uint bw = 100,
     uint bh = 100)
{
    if (bw > img.width)
        bw = img.width;
    if (bh > img.height)
        bh = img.height;

    uint numBlocksX = img.width / bw + ((img.width % bw) > 0);
    uint numBlocksY = img.height / bh + ((img.height % bh) > 0);

    Block[] blocks = new Block[numBlocksX * numBlocksY];
    foreach(x; 0..numBlocksX)
    foreach(y; 0..numBlocksY)
    {
        uint bx = x * bw;
        uint by = y * bh;

        uint bw1 = bw;
        uint bh1 = bh;

        if ((img.width - bx) < bw)
            bw1 = img.width - bx;
        if ((img.height - by) < bh)
            bh1 = img.height - by;

        blocks[y * numBlocksX + x] = Block(bx, by, bx + bw1, by + bh1);
    }

    foreach(i, ref b; taskPool.parallel(blocks))
    {
        ffunc(range!uint(b.x1, b.x2),
              range!uint(b.y1, b.y2));
    }
}

Пример (закрашивание сплошным цветом):

SuperImage filterTestMultithreaded(SuperImage img)
{
    auto res = img.dup;
    
    img.parallelFilter((PixRange row, PixRange col)
    {
        foreach(x; row)
        foreach(y; col)
        {
            res[x, y] = hsv(180.0f, 1.0f, 0.5f);
        }
    });
    
    return res;
}

Для сравнения – однопоточный вариант:

SuperImage filterTestSinglethreaded(SuperImage img)
{
    auto res = img.dup;
    
    foreach(x; img.row)
    foreach(y; img.col)
    {
        res[x, y] = hsv(180.0f, 1.0f, 0.5f);
    }
   
    return res;
}

На двухъядерном Intel Dual Core T2390 (1.86 ГГц) многопоточный вариант показывает прирост производительности на 70%.

Интернационализация в D

Представляю вашему вниманию i18n.d – простое и минималистичное решение для интернационализации программ на языке D. Работает по принципу GNU gettext и других аналогичных инструментов: для перевода строки, ее нужно обернуть в функцию “_”.
В данный момент модуль имеет поддержку Windows и всех POSIX-систем.

Пример использования:

import std.stdio;
import i18n;

void main()
{
    Locale.readLang("locale", ".lang");

    writeln("Hello, world!"._);
}

Программа будет искать файлы локализации (*.lang) в каталоге locale. Имена файлов должны соответствовать RFC 3066 (в POSIX-варианте). Кодировка – UTF-8.

Вот пример русской локали (ru_RU.lang):

"Hello, world!" = "Привет, мир!"
"Some text" = "Какой-то текст"

Исходный код i18n.d:
https://gist.github.com/gecko0307/8419717

Журнал “FPS” №27

Вышел 27 номер электронного PDF-журнала “FPS”, посвященного разработке игр, программированию, компьютерной графике и звуку.

Читайте в этом номере:

> Подборка новостей по Blender
> Тон Розендаль о будущем интерфейса Blender
> GIMP: цветокоррекция на Python
> От мольберта – к дисплею. Заметки о цифровой живописи
> Физический движок своими руками. Часть IV
> Математика в dlib
> Ranges: диапазоны в D
> Игровые новости из мира Linux
> Право на творчество

Номер доступен для онлайн-чтения и загрузки на сервисе Issuu.com, Документах Google и Dropbox.

Последние новости по проекту вы можете узнать в публичной странице журнала в социальной сети Google+: http://gplus.to/fpsmag. Добавляйте нас в круги, оставляйте свои комментарии и отписывайтесь в нашем сообществе.

Архив номеров журнала здесь.

Cook2

В связи с выходом DMD 2.064 с поддержкой пакетного импортирования, была создана новая нестабильная ветка проекта Cook (инкрементальной системы сборки для программ на D).
В Cook2 планируется внесение серьезных изменений без сохранения обратной совместимости: в частности, переписан код обработки опций командной строки (он теперь использует std.getopt), а также удалена устаревшая и ненужная функциональность.
Поддержка пакетных модулей (package.d) уже обеспечена – кроме того, появилась поддержка выборочных и именованных импортов (например, import foo = bar.Foo и import std.stdio: writefln).

Репозиторий проекта:
https://github.com/gecko0307/cook2

Обновление dlib.image

В dlib.image появилась возможность отслеживать прогресс во время работы фильтров. Для этого используется многопоточность – необходимо создать класс-враппер, наследующий от FilteringThread. Прогресс (от 0 до 1) считывается из свойства progress для SuperImage. В данном примере показано, как использовать эту функциональность для вывода прогресса свертки в консоль:

import std.stdio;
import dlib.image.image;
import dlib.image.io.png;
import dlib.image.filters.convolution;
import dlib.image.fthread;

class ConvolutionThread: FilteringThread
{
    float[] kernel;
    
    this(SuperImage img, float[] k)
    {
        super(img);
        kernel = k;
    }
    
    override void run()
    {
        output = image.convolve(kernel);
    }
    
    override void onRunning()
    {
        writef("Convolving %s%%", cast(uint)(image.progress * 100));
        write("r");
        stdout.flush();
    }
    
    override void onFinished()
    {
        writeln();
    }
}

void main()
{
    auto img = loadPNG("test.png");
    img = (new ConvolutionThread(img, Kernel.Emboss)).filtered;
    img.savePNG("output.png");
}