Интерполяция на основе сигмоиды

Для одного из шейдеров на GLSL мне потребовалась “умная” интерполяция цветов с возможностью изменять резкость перехода от одного значения к другому – от полностью плавного (линейного) до дискретного. В итоге получилась вот такая функция, которую я вывел на основе рациональной сигмоиды – может быть, кому-то пригодится:


float sigmoid(float x, float k)
{
return (x + x * k - k * 0.5 - 0.5) / (abs(x * k * 4.0 - k * 2.0) - k + 1.0) + 0.5;
}

При k = 0 функция обращается в линейную, при k = 1 – разрывается в точке 0,5. Вы можете увидеть, как это работает, при помощи интерактивного графика на Desmos: https://www.desmos.com/calculator/s0cwcrtzvs.

Результат этой функции передается в привычный mix – то есть, вместо mix(c1, c2, t) пишем mix(c1, c2, sigmoid(t, k)). Получится, например, такое:

(градиенты гамма-скорректированы)

dlib 0.9.0 beta

Вышла бета-версия коллекции библиотек dlib 0.9.0. Из основных нововведений стоит отметить новый модуль dlib.math.tensor – реализацию тензоров с поддержкой как статического, так и динамического выделения памяти (еще один шаг, приближающий dlib к NumPy и Matlab). Также значительно улучшен пакет dlib.image: появился экспорт в BMP и TGA, двумерный foreach для изображений, диапазоны для окон и произвольных прямоугольных регионов. Новый пакет dlib.network, как планируется, будет содержать независимую от Phobos поддержку сети и веб-функциональность (пока в нем есть только парсер URL).

А еще Atrium был успешно портирован под FreeBSD.

dlib 0.5

Не так давно состоялось очередное крупное обновление коллекции библиотек dlib – вышла версия 0.5, наиболее значительным нововведением которой стала поддержка ручного управления памятью (РУП). Но – обо всем по порядку…

  • Новый модуль dlib.core.memory предоставляет средства для ручного выделения и высвобождения динамической памяти, независимые от сборщика мусора и основанные на malloc/free. Имеется поддержка структур, классов и массивов. При использовании классов рекомендуется использовать интерфейс ManuallyAllocatable и перегружать метод free, который ответственен за удаление объекта – в противном случае корректное удаление в некоторых случаях не гарантировано (например, при доступе через интерфейс или родительский класс).
  • Началась работа по переводу всей dlib на РУП. Так, загрузчики изрбражений (PNG, JPEG, TGA, BMP) в новой версии полностью независимы от сборщика мусора. Для этого активно используется паттерн абстрактной фабрики, ответственный за создание изображений  в памяти. Кстати, в загрузчике PNG значительно улучшена поддержка индексированных изображений, для них добавлена поддержка альфа-канала.
  • Кроме того, на РУП переведены некоторые контейнеры из dlib.container – BST, ассоциативный массив. Реализован полностью ручной динамический массив (dlib.container.array).
  • Еще одна новинка – ООП для структур (dlib.core.oop). Это экспериментальный модуль, реализующий для структур прототипный стиль ООП с поддержкой множественного наследования и параметрического полиморфизма. Полностью заменить классы он, конечно, не может, но окажется весьма полезен, если нужно создавать объекты с наследованием в стеке. В будущем планируется переписать некоторые внутренние механизмы dlib с использованием этой легковесной объектной системы.
  • В пакете dlib.math появилась поддержка дуальных кватернионов. Это частный случай алгербы Клиффорда, обобщение кватернионов на поле дуальных чисел. Их можно использовать, например, для описания движения тел в кинематике – один дуальный кватернион охватывает и перенос, и вращение. Кстати, реализация обычных кватернионов через инкапсуляцию теперь совместима с векторами.
  • Изменения коснулись и пакета вычислительной геометрии. Усеченная пирамида (dlib.geometry.frustum) теперь задается с нормалями ограничивающих плоскостей, указывающими наружу пирамиды. Подвергся изменению API проверки пересечения Frustum с AABB. Исправлены ошибки в реализации AABB и плоскости.

dlib 0.3

Состоялся релиз коллекции библиотек dlib 0.3. Нововведения этой версии:

  • Добавлены абстрактные потоки ввода/вывода (dlib.core.stream), независимые от Phobos, а также интерфейс файловой системы (dlib.filesystem) с готовыми реализациями для POSIX и Windows – этот интерфейс можно использовать, например, для построения виртуальных ФС.
  • Добавлена начальная поддержка HDRI в dlib.image (реализация формата изображений с плавающей запятой в dlib.image.hdri). Кроме того, обеспечена поддержка распараллеливания обработки изображений (dlib.image.parallel), добавлена поддержка чтения форматов TGA и BMP. Чтение/запись графических форматов теперь основаны на потоках, поэтому имеется возможность загружать изображения, например, напрямую из архивов.
  • Элементы матриц (dlib.math.matrix) теперь располагаются по столбцам, а не по строкам. Это серьезно нарушило обратную совместимость, но если вы не используете внутренние данные матриц и пользуетесь только внешним API, то это изменение не должно повлечь никаких проблем.

Более полный чейнджлог, а также исходники релиза вы можете найти на GitHub:
https://github.com/gecko0307/dlib/releases/tag/v0.3.0

Рефакторинг матриц в dlib

На днях состоялось грандиозное обновление пакета линейной алгебры dlib.math. Изменения коснулись, главным образом, реализации матриц. Если раньше матрицы 2×2, 3×3 и 4×4 имели каждая отдельную независимую реализацию, то теперь все они являются частными случаями обобщенной квадратной матрицы Matrix!(T,N) (где T – тип элементов, N – размерность). Она содержит все необходимые общие методы для матриц любого размера (нахождение определителя, нахождение обратной матрицы, нахождение матрицы миноров и алгебраических дополнений и т.д.), оптимизированные, где это возможно, для размерностей 2, 3 и 4. Таким образом, нынешние специализации Matrix2x2f, Matrix3x3f и Matrix4x4f практически идентичны их прежним аналогам.

Новая реализация создана с учетом обратной совместимости, но все-таки есть несколько критичных изменений:

1. Больше нет шаблонов Matrix2x2!(T), Matrix3x3!(T), Matrix4x4!(T). Используйте вместо них Matrix!(T,2), Matrix!(T,3) и Matrix!(T,4). При этом псевдонимы на специализации типа Matrix2x2f и Matrix4x4d сохранены;

2. Нет доступа к элементам матриц 4×4 через поля m*, t* и h*. Возможен только доступ через поля a*. Это справедливо для матриц любого размера:


a11 a12 a13 a14 .. a1N
a21 a22 a23 a24 .. a2N
a31 a32 a33 a34 .. a3N
a41 a42 a43 a44 .. a4N
: : : : .
aN1 aN2 aN3 aN4 ' aNN

2. Все аффинные преобразования (функции rotationMatrix, translationMatrix и др.) и утилитарные функции для матриц вынесены в отдельный модуль dlib.math.affine. Там же находятся функции right, up, forward, translation, scaling, которые раньше были опрелены как методы в Matrix4x4!(T). Благодаря UFCS, их и теперь можно использовать как методы – однако все они теперь представляют собой свойства только для чтения. Пока они определены только для Matrix!(T,4), но в будущем функции базиса (right, up, forwartd) будут доступны и для Matrix!(T,3).

3. В целях обратной совместимости сохраняются модули dlib.math.matrix2x2, dlib.math.matrix3x3, dlib.math.matrix4x4, но они помечены как deprecated. Вместо них импортируйте dlib.math.matrix (и dlib.math.affine, если вам нужны аффинные преобразования)

2. Не рекомендуется использовать identityMatrix3x3!(T) и identityMatrix4x4!(T). Единичные матрицы создаются при помощи статического метода identity: например, Matrix3x3f.identity.

3. Не рекомендуется трансформировать векторы методом transform. Вместо этого лучше использовать умножение вектора на матрицу: Vector3f(1, 2, 3) * myMatrix.

4. Любые матрицы можно создавать при помощи функции-фабрики matrixf, которая автоматически определяет размерность на основе входных данных:

auto m1 = matrixf(
8, 3, 2, 0,
4, 0, 2, 0,
1, 3, 3, 0,
0, 0, 3, 1
);

Это выражение создаст матрицу типа Matrix!(float,4) и присвоит ее переменной m1.

Убедительная просьба всем пользователям dlib сообщить мне (в Issues в репозитории на GitHub, либо на почту – gecko0307@gmail.com), если будут обнаружены какие-то несостыковки и баги, связанные с данным рефакторингом матриц.